

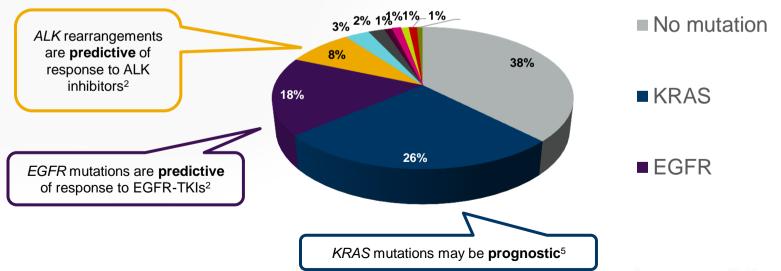
Management of NCSLC with EGFR Mutations

Dr. Hemant Malhotra

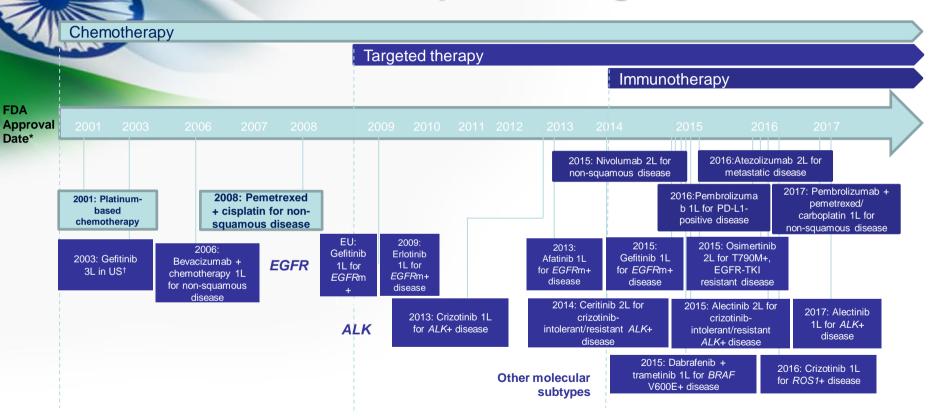
MD, FRCP (London), FRCP (Edinburgh), FACP (USA), MNAMS, FUICC, FICP, FIMSA

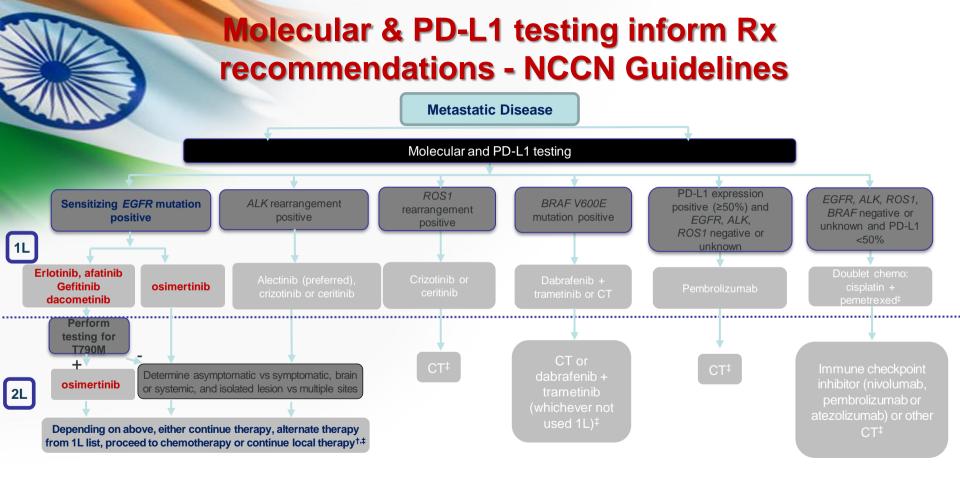
Professor & Head, Dept. of Medical Oncology,

Mahatma Gandhi Medical College & Hospital, Jaipur.


Email: <u>drmalhotrahemant@gmail.com</u>

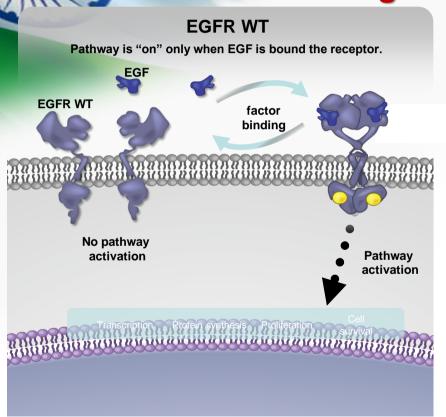
More than 50% of Stage IV NSCLC have biomarkers

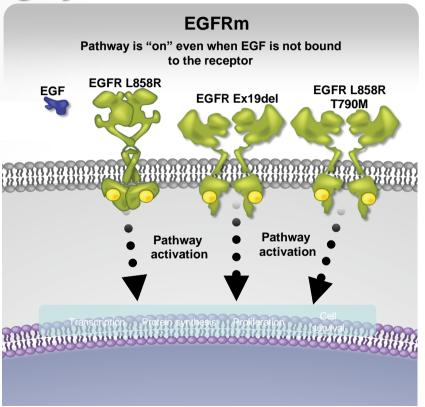

therapy on patient outcome


Prognostic biomarkers are indicative of patient survival independent of treatment received because the biomarker is an indicator of the innate tumour aggressiveness

Testing for several genetic mutations and for PD-L1 status is recommended for patients with advanced NSCLC to determine whether they can receive treatment with targeted agents.¹⁻³

Treatment landscape for Stage IV NSCLC

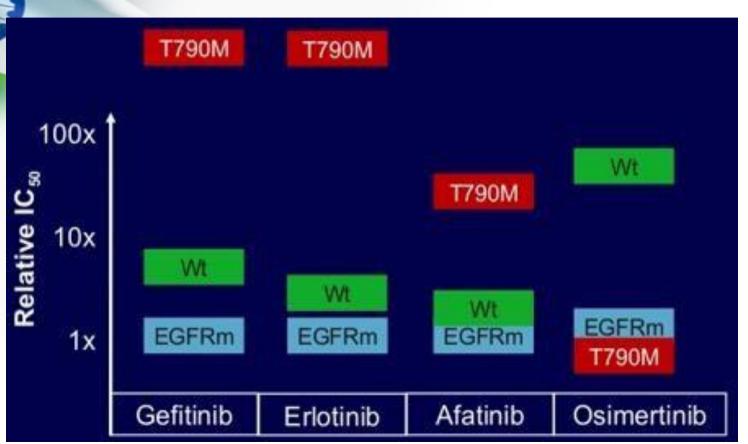




Management of EGFR +ve Stage IV NSCLC patients

EGFR-activating mutations result in constant signaling by the EGFR

Anti-EGFR TKI

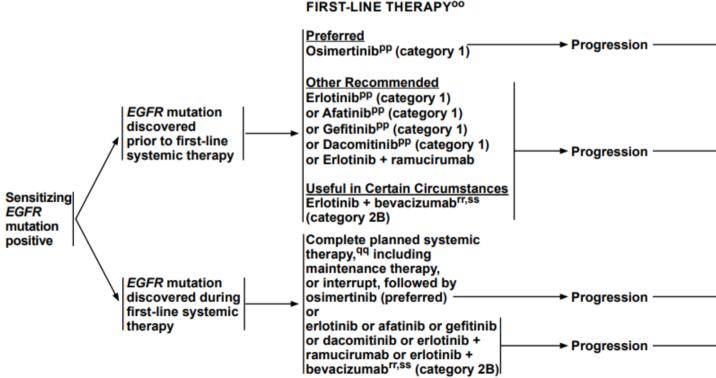

- 1st generation:
 - Gefitinib
 - Erlotinib
- 2nd generation:
 - Afatinib
 - Dacomitinib
- 3rd generation:
 - Osimertinib
 - Rociletinib

Comparative evaluation of EGFR-TKIs

	First-Generation EGFR-TKIs	Second-Generation EGFR-TKIs	Third-Generation EGFR-TKIs
EGFR binding	Reversible	Irreversible	Irreversible
EGFR ^{WT}	+	+	-
EGFR ^{Del19/L858R}	+	+ +	+ +
EGFR ^{T790M}	_	+	+ + +
ErbB2	-	+	-
ErbB4	-	+	-
BBB penetration	+	+	+ + + ^c
Agent	Gefitinib, erlotinib, icotinib	Afatinib, dacomitinib	Osimertinib, rociletinib, HM61713, EGF816, ASP8273

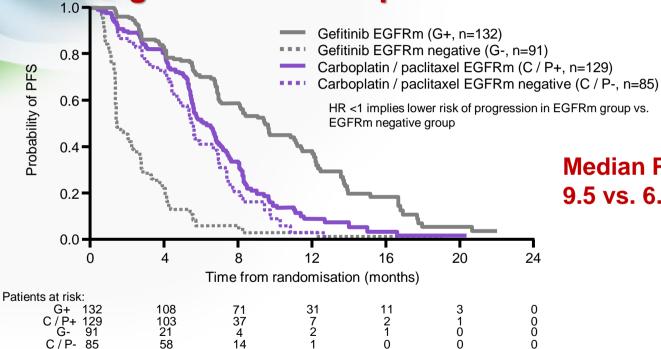
www.free-power-point-templates.com

Relative potency of TKIs



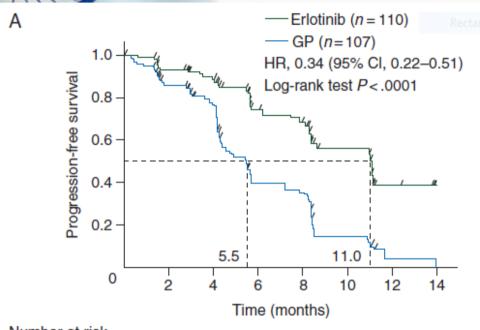
NCCN Guidelines Version 6.2020 Non-Small Cell Lung Cancer

SENSITIZING EGFR MUTATION POSITIVE^{jj}



1st Gen. TKI v/s chemotherapy

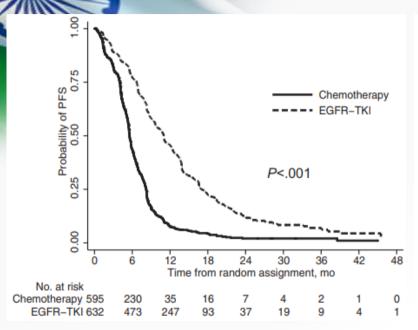
IPASS trial (Gefitinib)


PFS is related to EGFRm status in gefitinib-treated patients

Median PFS of 9.5 vs. 6.3 months

ENSURE (Erlotinib)

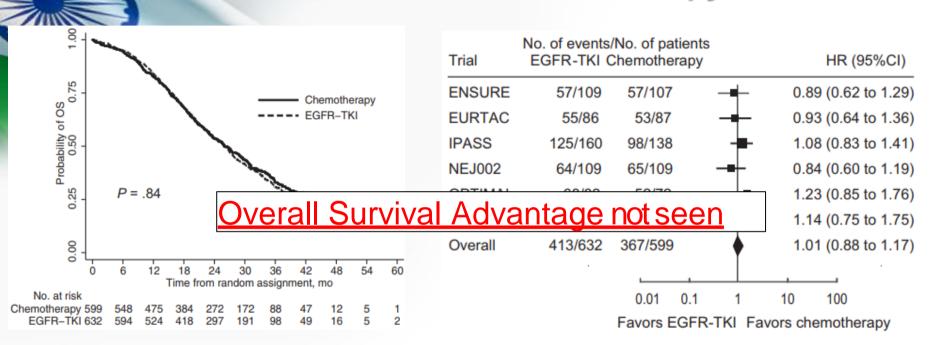
Significantly longer PFS with Erlotinib v/s standard Chemotherapy.



	Median PFS (months)	HR (95% CI)
Erlotinib (n=110)	11.0	0.33
Chemotherapy(n=107)	5.5	(0.23-0.47) p-value < 0.0001

n.	LUCO	ber at	PIO!
1.7		Der al	
	MI III	oo: a	

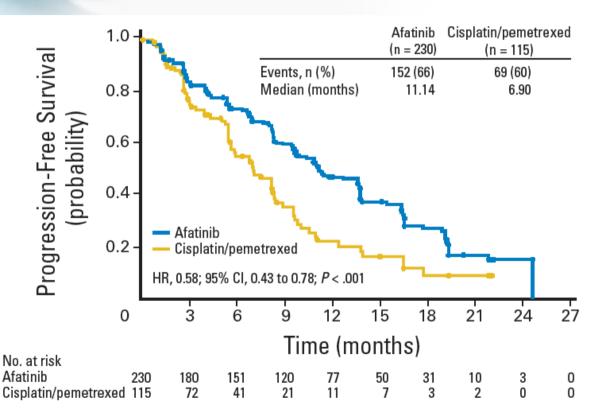
Erlotinib	110	89	74	42	38	21	5	0
GP	107	75	55	25	22	7	1	0


1st Gen. TKI vs Chemotherapy - PFS

	No of over	to/No of notionto	
Trial		ts/No. of patients Chemotherapy	HR (95%CI)
ENSURE	93/109	90/107 -	0.36 (0.26 to 0.49)
EURTAC	71/86	62/87 -	034 (0.23 to 0.49)
IPASS	113/160	117/138	0.45 (0.34 to 0.59)
NEJ002	93/109	97/106 -	0.30 (0.22 to 0.42)
OPTIMAL	49/82	63/72 -	0.16 (0.10 to 0.26)
WJTOG 340	5 74/86	82/86 -	0.54 (0.39 to 0.74)
Overall	493/632	511/596	0.37 (0.32 to 0.42)
		0.01 0.1	1 10 100
		Favors EGFR-TK	I Favors chemotherapy

Study Design:- Meta-analysis of 6 trials (N=1,231) comparing efficacy of Gefitinib or Erlotinib vs Chemotherapy in patients with Exon 19 deletion or L858R mutation

First Generation TKI vs Chemotherapy - OS

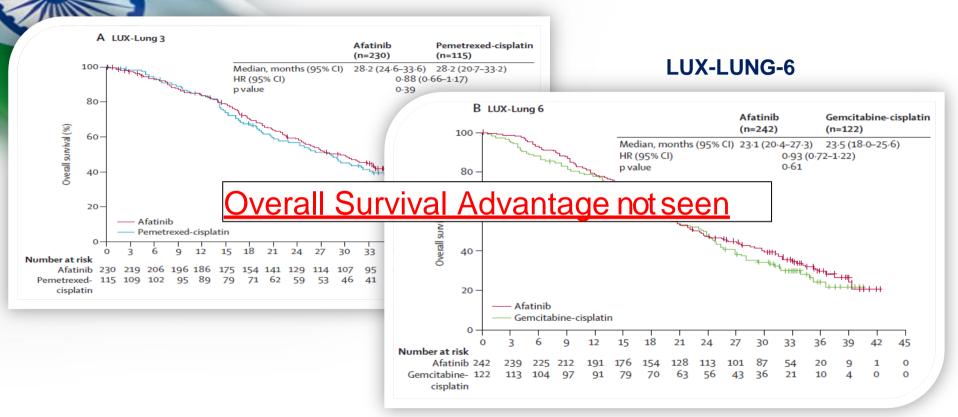


Study Design:- Meta-analysis of 6 trials (N=1,231) comparing efficacy of Gefitinib or Erlotinib vs Chemotherapy in patients with Exon 19 deletion or L858R mutation

Lee CK, Davies L, et al: J Natl Cancer Inst. 2017 01;109(6).

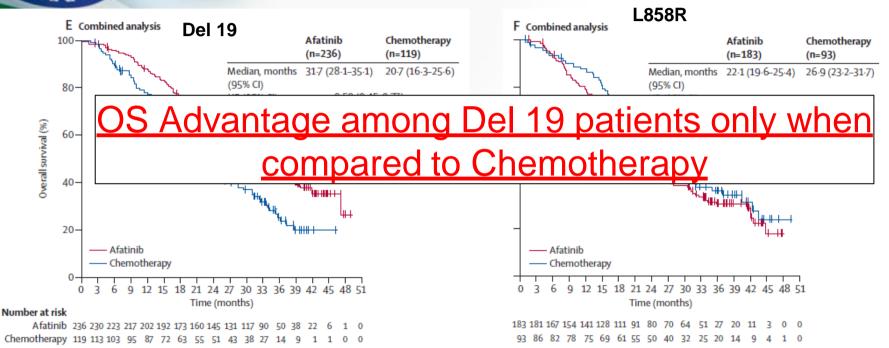
LUX LUNG 3 (Afatinib)

Afatinib - significantly Prolonged PFS v/s standard Chemotherapy.

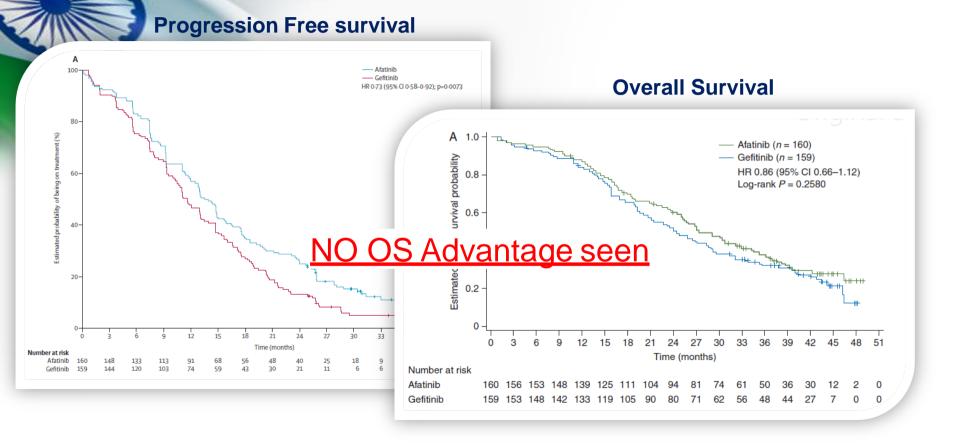

2nd Gen. TKI vs Chemotherapy: PFS

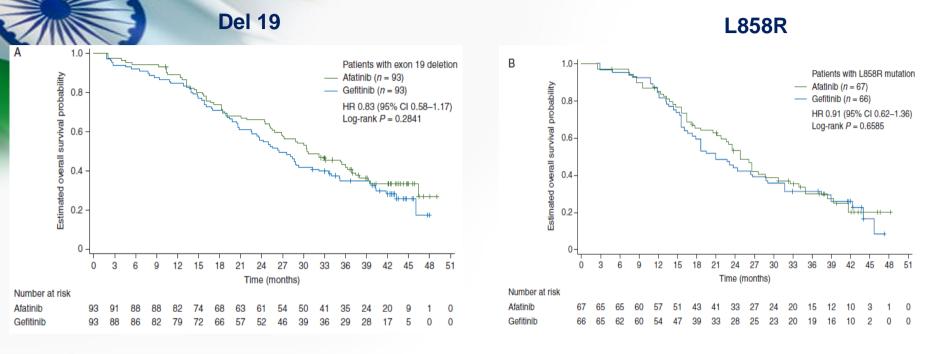
Study	Treatments	N*	Hazard	Ratio	Median PFS
LUX LUNG 3 1	Afatinib vs Cis/Pem	308	-	0.47 [0.34, 0.65]	13.6 vs 6.9
LUX LUNG 6 2	Afatinib vs Cis/Gem	324	-	0.25 [0.18, 0.35]	11.0 vs 5.6
Total (95% CI)			•	0.34 [0.27, 0.43]	
		0.01	0,1 1	10 100	ר ז
		0.01		Favors chemotherapy	

- Treatment naïve EGFR +ve stage IIIB or IV lung adenocarcinoma enrolled in LUX-Lung 3 (n=345) and LUX-Lung 6 (n=364).
- Randomly assigned in a 2:1 ratio to receive afatinib or chemotherapy (pemetrexed-cisplatin [LUX-Lung 3] or gemcitabine-cisplatin [LUX-Lung 6]),stratified by EGFR mutation (exon 19 deletion [del19], Leu858Arg, or other) and ethnic origin (LUX-Lung 3 only).


2nd Gen. TKI vs Chemotherapy: OS

LUX-LUNG-3

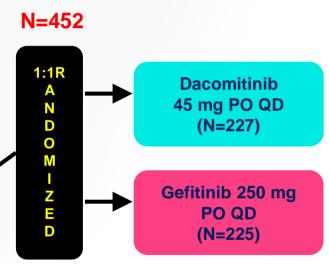

LUX LUNG 3 & 6 OS according to mutation analysis



1st Gen. v/s 2nd Gen. TKI

LUX LUNG - 7

LUX LUNG - 7


NO OS Advantage seen as per mutation analysis also

ARCHER 1050: Study Design

Phase III randomized, open-label, study to evaluate dacomitinib as an alternative first-line treatment for patients with advanced NSCLC with an EGFR-activating mutation

Key eligibility criteria:

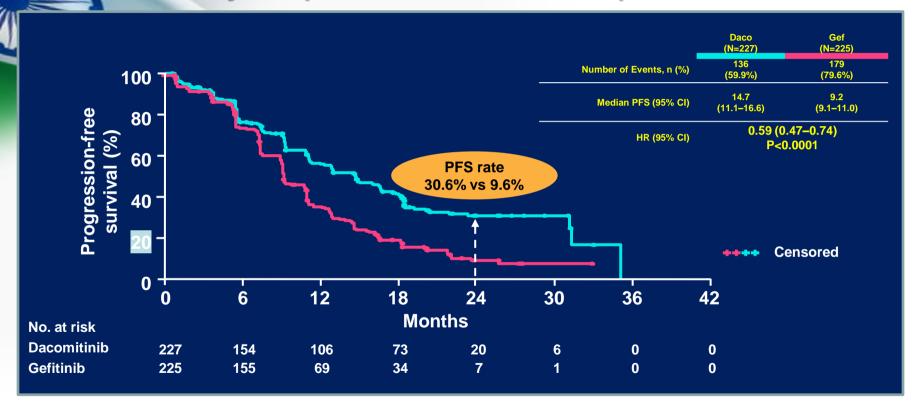
- Advanced NSCLC with EGFRactivating mutation(s)
- Measurable lesion(s) as per RECIST criteria v1.1
- No prior systemic treatment of advanced NSCLC
- No CNS metastasis
- No prior EGFR TKI or other TKI
- ECOG PS 0-1

Stratification factors:

Race (incl. Asian vs non-Asian)

EGFR mutation type (exon 19 deletion vs L858R mutation)

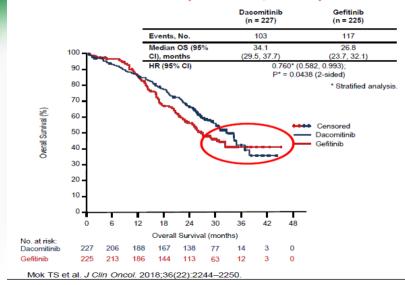
Primary endpoints:

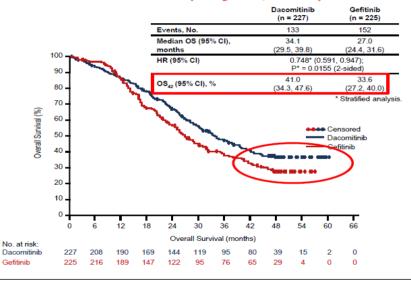

PFS by blinded IRC in the ITT population

Secondary endpoints:

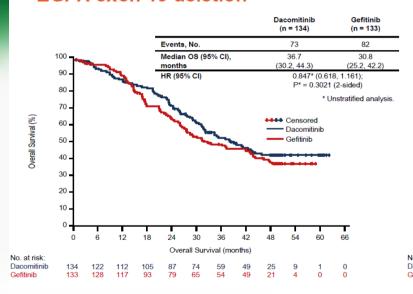
- PFS (investigator assessed), ORR, DOR, TTF, RMST, OS and OS at 30 months
- Safety and PROs

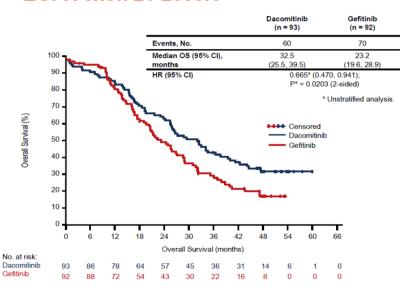
www.free-power-point-templates.com


ARCHER 1050: PFS by Independent Review – ITT Population



ARCHER 1050: Overall Survival – Intention-to-Treat Population


Overall Survival (May 13, 2019)


Mok TS, et al. presented at ESMO Asia 2019. 22-24 November, Singapore.

Overall Survival – EGFR Mutational Status

FGFR exon 19 deletion

EGFR exon 21 L858R

Mok TS, et al. presented at ESMO Asia 2019. 22-24 November, Singapore.

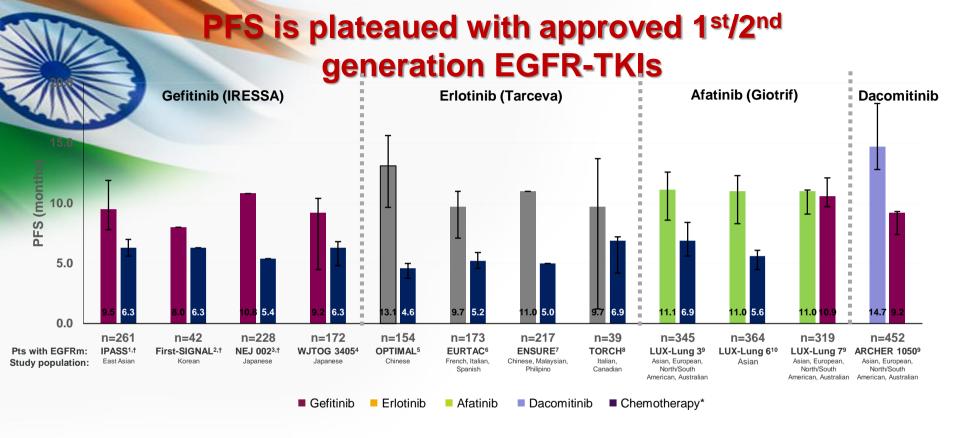
ARCHER 1050: Serious Adverse Events

	Total incidence of SAEs	Treatment-related SAEs	Permanent discontinuation due to treatment-related AEs	Death related to treatment
Dacomitinib (n=227)	62 (27%)	21 (9%)	22 (10%)	2 (0.9%)
Gefitinib (n=224)	50 (22%)	10 (4%)	15 (7%)	1 (0.4%)

- Causes of death related to treatment:
 - Dacomitinib: 2 (one related to untreated diarrhea, one related to untreated cholelithases/liver disease)
 - Gefitinib: 1 (related to sigmoid colon diverticulitis/rupture complicated by pneumonia)

ARCHER 1050: Dose Modification

Dacomitinib


First dose reduction: 30 mg/day

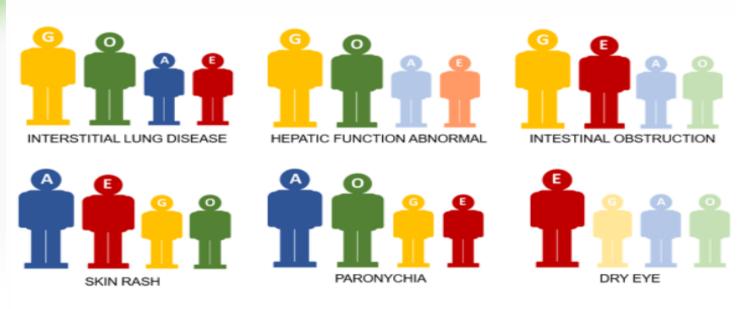
Second reduction: 15 mg/day

Gefitinib

250 mg every two days

	Median time to first dose reduction	Median duration of dose reduction	Reduction to 30 mg daily	Reduction to 15 mg daily	Total number of patients with dose modification
Dacomitinib (n=227)	2.8 months (IQR 1.3-4.2)	11.3 months (IQR 4.8–18.9)	87 (38%)	63 (28%)	150 (66%)
Gefitinib (n=224)	3.3 months (IQR 2.4–4.2)	5.2 months (IQR 2.5–7.9)	NA	NA	18 (8%)

Consistently PFS of 9-12 months have been reported with currently approved EGFR-TKIs in global studies since IPASS

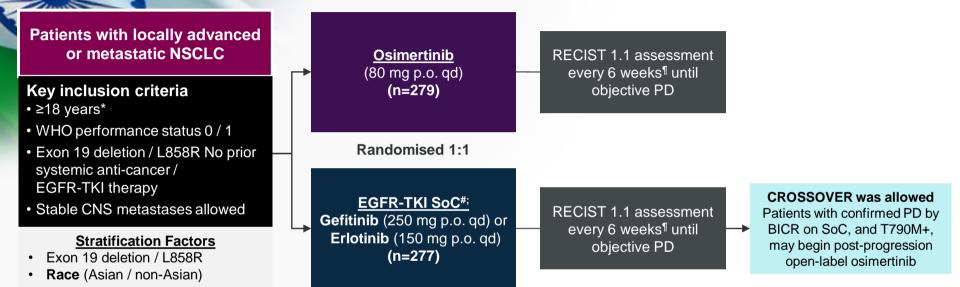

Tolerability still remains an issue with 2nd gen EGFR TKIs

EGFR TKIs	Grade 3 or 4 AE	Treatment- related SAE	AE leading to dose modification	AE leading to discontinuation	Most common grade 3 or 4 AE
Erlotinib	40-50%	2-6%	~20%	5-6%	Rash, fatigue, elevation of ALT
Gefitinib	~30%	2-4%	11-15%	4-6%	Rash, diarrhoea, elevation of ALT
Afatinib	26-79%	6-12%	27-70%	6-29%	Rash, diarrhoea
Dacomitinib	27-44%	9%	66%	10%	Diarrhoea

EFGR TKI Toxicities

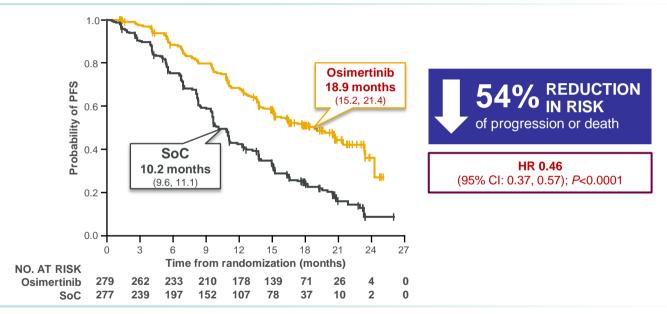
Schematic representation - Adverse Events associated with EGFR TKI Gefitinib (G), Erlotinib (E), Afatinib (A), Osimertinib (O)

Significant ROR

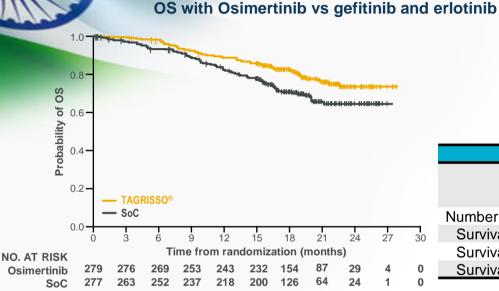

No significant ROR

3rd Gen. TKI

FLAURA


Phase III, double-blind, study conducted across 132 sites in 29 countries

Primary endpoint			Secondary	er	ndpoints
	PFS based on investigator assessment according to RECIST 1.1 (90% powered to detect a hazard ratio of 0.71 at a two-sided alpha-level of 5%)	•	Objective response rate Duration of response Disease control rate Depth of response	•	Overall survival Patient reported outcomes Safety

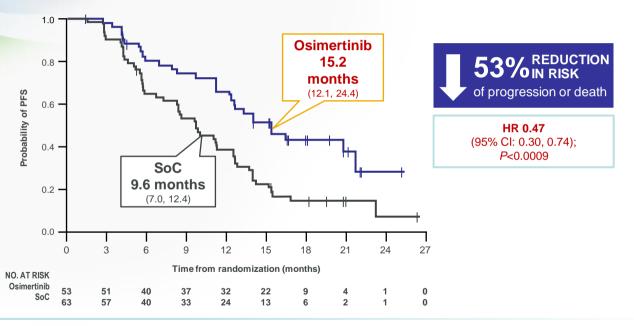

Osimertinib (FLAURA) 8.7 months longer mPFS than current SoC EGFR TKIs

mPFS (months) (95% CI) with Osimertinib vs gefitinib and erlotinib^{1,2}

Clinically meaningful and statistically significant mPFS improvement

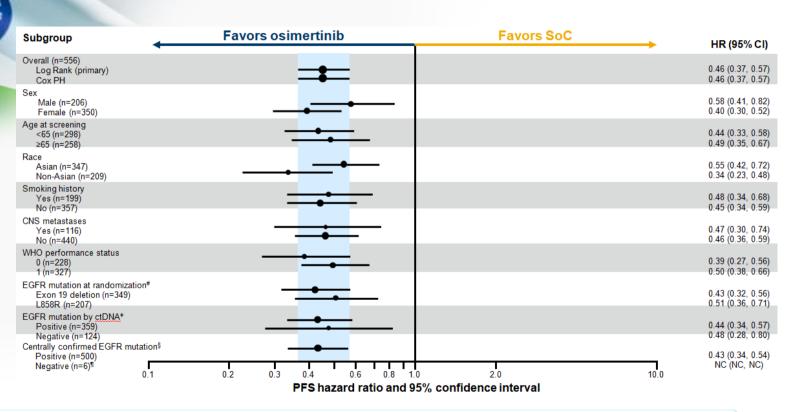
With over 2 years of interim data, Osimertinib reduced the risk of death by 37% compared to SoC EGFR TKIs

37%	REDUCTION IN RISK
	of death


HR 0.63 (95% CI: 0.45, 0.88); *P*<0.0068 (NS)[†]

Survival						
	Osimertinib (N=279)	EGFR-TKI SoC (N=277)				
Number of deaths	58	83				
Survival at 6 months (%)	98.2	93.4				
Survival at 12 months (%)	89.1	82.5				
Survival at 18 months (%)	82.8	70.9				

Interim analysis of OS demonstrated a HR of 0.63 in favor of Osimertinib vs SoC; OS data has not fully matured

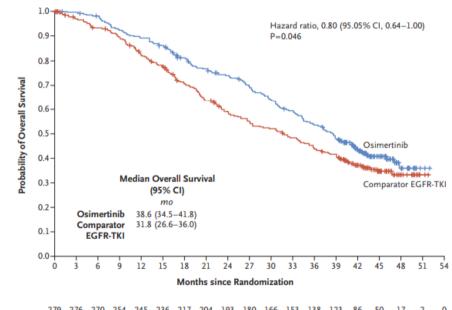

PFS benefit for Osimertinib vs SoC is maintained in patients with CNS metastases in FLAURA

mPFS in patients with CNS metastases (n=116)

Clinically meaningful and statistically significant mPFS improvement

Efficacy: PFS across subgroups

A consistent benefit of osimertinib over standard EGFR-TKIs with respect to progression-free survival was shown across all predefined subgroups


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC

S.S. Ramalingam, J. Vansteenkiste, D. Planchard, B.C. Cho, J.E. Gray, Y. Ohe, C. Zhou, T. Reungwetwattana, Y. Cheng, B. Chewaskulyong, R. Shah, M. Cobo, K.H. Lee, P. Cheema, M. Tiseo, T. John, M.-C. Lin, F. Imamura, T. Kurata, A. Todd, R. Hodge, M. Saggese, Y. Rukazenkov, and J.-C. Soria, for the FLAURA Investigators*

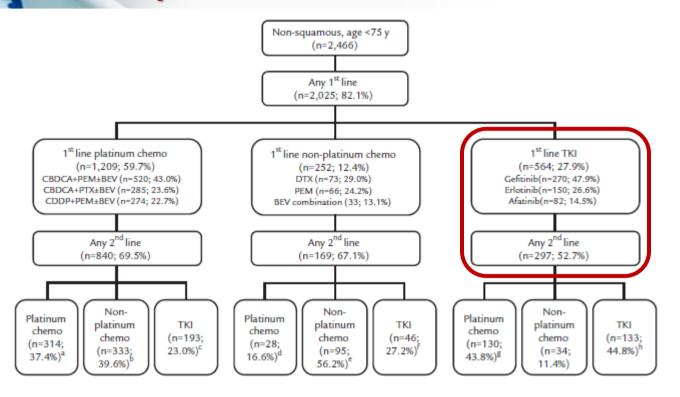
N ENGL J MED 382;1 NEJM.ORG JANUARY 2, 2020

Subsequent treatment

~40% patients did not receive 2L treatment in both arms

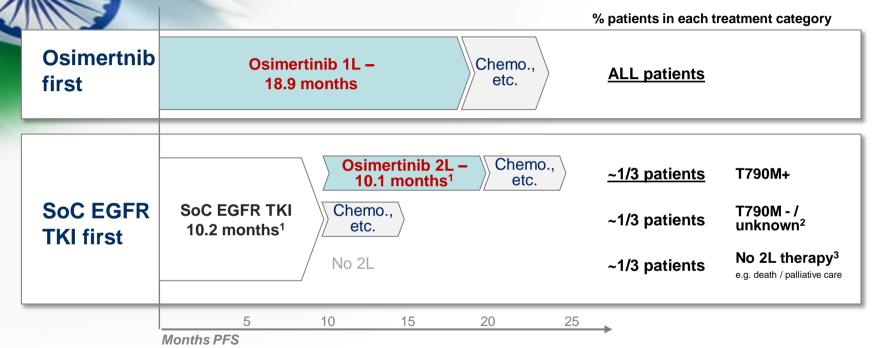
Characteristic, %	Osimertinib (n=279)	EGFR-TKI SoC (n=277)	Significance		
PFS	18.9 mts (95% 15.2-21.4)	10.2 mts (95% 9.6-11.1)	HR 0.46 (95% CI: 0.37, 0.57); P<0.0001		
% of patients continuing assigned treatment	141 (51%)	64(23%)			
First subsequent Anticancer treatment % (n)	82 (29%)	129 (47%)			
Chemotherapy	53 (71%)	32 (25%)			
EGFR-Tki therapy	29 (21%)	97 (46%) [*]			
TFST (Time to first subsequent treatment)	23.5 mts (95% CI 22.0 - [NC])	13.8 mts (95% CI 12.3 to 15.7)	HR: 0.51 [95% CI 0.40 to 0.64], p<0.001		
PFS2	NC (95% CI 23.7 to NC)	20.0 mts (95% CI 18.2 to NC)	HR 0.58 (95% CI 0.44 to 0.78; P<0.001)		
TSST (Time to second subsequent treatment)	NC (95% CI NC-NC)	25.9 monts (95% CI 20.0 to NC)	HR 0.60 (95% CI 0.45 to 0.80; P<0.001)		

^{* 48} patients received Osimertinib on cross-over in SOC arm


Sequencing of TKI

Phase III EGFR TKI trials 23 of patients receive a second therapy after progression

	IPASS n=132	IFUM N=106	NEJ002 N=114	WJTOG 3405 N=86	EURTAC N=86	OPTIMAL N=82	ENSURE N=110	CTON N=128	G0901 N=128	LL3 N=230	LL6 N=242	N=160	L7 N=159
ТКІ	Gefitinib	Gefitinib	Gefitinib	Gefitinib	Erlotinib	Erlotinib	Erlotinib	Gefitinib	Erlotinib	Afatinib	Afatinib	Afatinib	Gefitinib
OS, months	21.6	19.2	27.7	34.8	19.3	22.8	26.3	20.1	22.9	28.2	23.1	27.9	24.5
Post-TKI treatment*	76%	49%	72%	88%	68%	63%	66%	55%	51%	71%	57%	73%	77%


Real-world scenario

~1/2 of patients receive 2L Rx after 1L TKI

Wang F, Mishina S, Takai S, Le TK, Ochi K, Funato K, et al. Systemic Treatment Patterns With Advanced or Recurrent Non-small Cell Lung Cancer in Japan: A Retrospective Hospital Administrative Database Study. Clinical Therapeutics [Internet]. 2017 Jun 1;39(6):1146–60. Available from: http://www.sciencedirect.com/science/article/pii/S014929181730245X

Osimertinib upfront or reserve it for later line?

Sit-at-home Messages!

- Proven benefit of all generation of EGFR TKIs vs Chemotherapy
- No OS benefit seen with 1st or 2nd gen TKI till date, OS benefit with osimertinib
- Safety concerns arises from first to second generation TKIs
- 3rd Generations TKIs (Osimertinib) have shown significant improvement in PFS over SoC
 - Consistent benefit in patients with and without CNS metastases at study entry
 - Interim OS results showed promising survival favoring Osimertinib vs SoC
- Significant fraction of patients do not receive 2L treatment after progressing on 1L TKI.
 - Should consider this while deciding for 1L treatment for EGFRm metastatic NSCLC patient
- Cost of Rx remains major factor in decision making

Thank You!!

Stay Positive, Stay Alert & Stay Safe!!